
Record & Tuple

Stage 1 Update @ TC39 March 2020

Robin Ricard & Rick Button
Bloomberg

Advisor: Daniel Ehrenberg
 Igalia

First, a refresher!

const titleRecord = #{
 text: "Record and Tuple",
 font: "Comic Sans",
};
const wordsTuple = #["Record", "Tuple"];

Settling down on the
syntax

is the new Object.freeze

#{ / #[
We intend to keep #

● We kept the option open in the
issue tracker until now

● Most feedback by people that
tried the syntax goes towards #
instead of {| |} and [| |]

● Adding a closing | is
cumbersome to type

Are we ok with # ?

const contents = #[
 #{
 text: "Record and Tuple",
 font: "Comic Sans",
 },
 #{
 text: "An ECMA TC39 Stage 1 Proposal",
 },
];

const title = #{
 text: "Record and Tuple",
 font: "Comic Sans",
};
const description = #{
 text: "An ECMA TC39 Stage 1 Proposal",
};
const contents = #[title, description];

at each level
Declaring Record and Tuple

structures is not recursive

● Original implicit behavior was
hard to reliably describe

● Grammar is simpler

Spec text
started

Mostly grammar and
introductions

● Grammar without lookaheads
● Methods in Record are

excluded in grammar
● Holes in Tuple are excluded as

well
● Feedback welcome

Referring to objects
from Record & Tuple

R&T are deeply
immutable

Design Goal: Prevent issues
with equality, cloning and

accidental mutations.

#{ a: {} } !== #{ a: {} }

R&T are deeply
immutable

They can only contain primitive
types… How do we refer to

objects in them?

const vdomButton = #{
 type: "button",
 children: #[
 "click me!"
],
 props: #{
 onClick:
 () => alert("clicked!"),
 },
 ref: document.getElementById("my-button"),
};

TypeError!

RefCollection
We have an upcoming Stage 0
proposal to reference objects
automatically using symbols.

const rc = new RefCollection();

const vdomButton = #{
 type: "button",
 children: #[
 "click me!"
],
 props: #{
 onClick: rc.ref(
 () => alert("clicked!")
),
 },
 ref: rc.ref(
 document.getElementById("my-button")
),
};

rc.deref(vdomButton.props.onClick)();
// => clicked!

Early stage 0 proposal
https://github.com/rricard/proposal-refcollection

“Deep Path Properties”

With objects
If using objects, normal
assignment is enough.

const state = {
 counters: [
 { name: "Counter 1", value: 1 },
 { name: "Counter 2", value: 0 },
 { name: "Counter 3", value: 123 },
],
 metadata: {
 lastUpdate: 1584382969000,
 }
};

state.counters[0].value = 2;
state.counters[1].value = 1;
state.metadata.lastUpdate = 1584383011300;

With records
Records are immutable, so we
can create a new record with

spread syntax

const state2 = #{
 ...state,
 counters: #[
 #{
 ...state.counters[0],
 value: 2,
 },
 #{
 ...state.counters[1],
 value: 1,
 },
 ...state.counters,
],
 metadata: #{
 ...state.metadata,
 lastUpdate: 1584383011300,
 },
}

Can we make updates in
deeply nested immutable
structures more practical?

“Deep Path
Properties”

Upcoming Stage 0 proposal for
additional property syntax for

records.

const state2 = #{
 ...state,
 counters[0].value: 2,
 counters[1].value: 1,
 metadata.lastUpdate: 1584383011300,
};

Early stage 0 proposal
https://github.com/rickbutton/proposal-deep-path-properties-for-record

Equality Semantics

-0
 =
==
 +
0

#[-0] !== #[+0]
#[NaN] === #[NaN]

#[-0] != #[+0]
#[NaN] == #[NaN]

● Discussed in issues #20 / #65
● Chosen in order to not

introduce more values for

which === and Object.is()
differ

● == equivalent to ===

● Presented for Stage 1 in October 2019
● Investigated possible synergy in API surface
● Currently, Read-only Collections proposal doesn’t an API for read-only arrays;

synergy with Tuple isn’t possible.

Synergy with Read-only Collections Proposal

Babel

Syntax &
Polyfill &
Playground

Support for Record & Tuple syntax landed in Babel 7.9.0!

🎉

Implements a graph of interned frozen objects, native === works as
expected.

Uses WeakRef and FinalizationRegistry to prevent memory leaks.

https://github.com/bloomberg/record-tuple-polyfill

const record = Record({ a: 1, b: 2, c: 3 });
const tuple = Tuple("a", "b");
assert(Record.keys(record) === tuple.pushed("c"));

// with babel-plugin-proposal-record-and-tuple
assert(#[1,2,3] === #[1,2,3]);

Please try the Record and Tuple Playground!

● Address questions presented in this meeting:
○ Syntax - #{} / #[]
○ Grammar (No methods, no holes)
○ Equality Semantics

● Incorporate this feedback from this meeting into the experimental polyfill.
● Publish experimental polyfill in a few weeks and encourage non-production

experimentation, and gather feedback through issues and surveys.

● If feedback is positive, we plan to propose Record and Tuple for Stage 2 in
4-6 months. Is this reasonable?

Next Steps for Record and Tuple

Discussion!

Bonus!

Name clash between
spec-internal Record
and Record

R&T Draft

Draft ECMA-262

Grammar

Trying to avoid a lookahead

Methods are forbidden

Holes are forbidden

