Record & Tuple

Stage 1 Update @ TC39 March 2020

Robin Ricard & Rick Button Advisor: Daniel Ehrenberg
Bloomberg Igalia

First, a refresher!

const titleRecord = #{
text: "Recordand Tuple",
font: "Comic Sans"”,

I
const wordsTuple = #["Record", "Tuple"];

O,
-
-

C

O

C

=

O
@)

@)
=
=

O,
)

>
qv)
e
-
N
)

e \We kept the option open in the
issue tracker until now
/ e Most feedback by people that
11'{ 'h'[tried the syntax goes towards #
instead of {| [} and [| |]
We intend to keep # e Adding a closing | is

cumbersome to type

Are we ok with # ?

const contents = #][

#4
text: "Record and Tuple",
font: "Comic Sans",

I

#4

text: "An ECMA TC39 Stage 1 Proposal”,

const title = #{
text: "Recordand Tuple",
font: "Comic Sans”,
b §
const description = #{
text: "An ECMA TC39 Stage 1 Proposal”,
b

const contents = #[title, description];

e Original implicit behavior was

1T at eaCh Ievel hard to reliably describe

e Grammar is simpler
Declaring Record and Tuple

structures is not recursive

SpeC teXt e Grammar without lookaheads

e Methods in Record are
Sta rted excluded in grammar
e Holesin Tuple are excluded as
well

Mostly grammar and
e Feedback welcome

Introductions

Referring to objects
from Record & Tuple

R&T are deeply
Immutable

Design Goal: Prevent issues
with equality, cloning and
accidental mutations.

#{ a: {} } == #{ a: {} }

R&T are deeply
immutable

They can only contain primitive
types... How do we refer to
objects in them?

const vdomButton = #{

type: "button”,
children: #]

"click me!”
1,
props: #{

onClick:

() => alert("clicked!"),

7o
ref: document.getElementById("my-button"),

TypeError!

const rc = new RefCollection();

const vdomButton = #{
type: "button",

children: #]
"click me!"
],
. props: #{
RefCOIIeCtlon onClick: rc.ref(
() => alert("clicked!")
),
We have an upcoming Stage 0 b
proposal to reference objects ref: re.ref(,, ,,
i) document.getElementById("my-button")
automatically using symbols.).

s

rc.deref(vdomButton.props.onClick)();

Early stage O proposal

https://github.com/rricard/proposal-refcollection

“Deep Path Properties”

With objects

If using objects, normal
assignment is enough.

const state = {
counters: [

{ name: "Counter 1", value: 1 },

{ name: "Counter 2", value: 0 },

{ name: "Counter 3", value: 123 },

] ’

metadata: {

lastUpdate: 1584382969000,

b

state.counters[0].value

state.counters[1].value
state.metadata.lastUpdate

2 .

l

l

1584383011300;

const state2 = #{
...state,
counters: #|

#{
...State.counters[9],
value: 2,
. },
With records x
...state.counters[1],
value: 1,
Records are immutable, so we b e coumtore
can create a new record with . |
spread syntax metadata: #{
...state.metadata,
lastUpdate: 1584383011360,
},

Can we make updates in
deeply nested immutable
structures more practical?

const state2 = #{

"Deep Path
P ro p e rti e S ; ;;:::::’rs[O].value: 2,

counters[1].value: 1,
Upcoming Stage 0 proposal for metadata.lastUpdate: 1584383011300,
additional property syntax for b
records.

Early stage O proposal

https://github.com/rickbutton/proposal-deep-path-properties-for-record

5O

Equality Semantics >

Discussed in issues #20 / #65
Chosen in order to not
introduce more values for
which === and Object.is()
differ

== equivalentto ===

#[-0] == #[+0]
#[NaN] === #[NaN]
#[-0] '= #[+0]

#[NaN] == #[NaN]

Synergy with Read-only Collections Proposal

e Presented for Stage 1 in October 2019
e Investigated possible synergy in APl surface
e Currently, Read-only Collections proposal doesn’t an API for read-only arrays;

synergy with Tuple isn’t possible.

Babel

Syntax &
Polyfill &
Playground

|
babel / babel)

Added support for record and tuple syntax #10865 M
- nicolo-ribaudo merged 18 commits into | babel:master | from | rickbutt record-and e [E& 4 days ago

7.9.0 Released: Smaller preset-env output, Typescript
3.8 support and a new JSX transform

March 16, 2020 by Nicolé Ribaudo
(N}

Lastly, @babel/parser now supports an additional ECMAScript proposal: Record & Tuple. Please note that
this is only parser support, and the transforms are still being worked on.

Support for Record & Tuple syntax landed in Babel 7.9.0!

const record = Record({ a: 1, b: 2, c: 3 });
const tuple = Tuple('a", "b");

assert(Record.keys(record) === tuple.pushed('c"));
assert(#[1,2,3] === #[1,2,3]);

Implements a graph of interned frozen objects, native === works as
expected.

Uses WeakRef and FinalizationRegistry to prevent memory leaks.

https://github.com/bloomberg/record-tuple-polyfill

Please try the Record and Tuple Playground!

@ https://rickbutton.github.io/reco. X +

< C & rickbutton.github.io/record-tuple-playground

Record and Tuple Playground Proposa

—
0
o
—
=<
s
[
i
b

1 import { Record, Tuple } from "record-and-tuple-polyfill"; (2 [, true]
const log = console.log; »(2) [, false]
»(3) [, true, true]
const record = #{ prop: 1 }; »(2) [, true]
onst tuple = #[1, 2, 3]; »(2) [, true]
- - : »(2) [, true]
log("isRecord"”, Record.isRecord(record)); o,
i 7 »(2) [, false]
log("isRecord"”, Record.isRecord({ prop: 1 }));
»(2) [, false]
»(2) [, true]

log("simple”,

#[1] === #[1]);

log("nested”, #{ a: #{ b: 123 }} === #{ a: #{ b: 123 }});
log("!order"”, #{ a: 1, b: 2 === #{ b: 2, a: 1});

_ log("-0 === +0", -0 === 10);

) il R = R

) log("NaN === NaN", NaN === NaN);

log("#[NaN] === #[NaN]", #[NaN] === #[NaN]);

Next Steps for Record and Tuple

e Address questions presented in this meeting:
o Syntax - #{} / #[]
o Grammar (No methods, no holes)
o Equality Semantics

e Incorporate this feedback from this meeting into the experimental polyfill.
e Publish experimental polyfill in a few weeks and encourage non-production
experimentation, and gather feedback through issues and surveys.

e |If feedback is positive, we plan to propose Record and Tuple for Stage 2 in
4-6 months. Is this reasonable?

Discussion!

Bonus!

Name clash between
spec-internal Record
and Record

1 Overview

R&T Draft

1.1 ECMAScript Overview

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is a cluster of communicating
objects. In ECMAScript, an object is a collection of zero or more properties each with attributes that determine how each property can be used—for
example, when the Writable attribute for a property is set to false, any attempt by executed ECMAScript code to assign a different value to the
property fails. Properties are containers that hold other objects, primitive values| or functions. A primitive value is a member of one of the following
built-in types: Undefined, Null, Boolean, Number, Bigint, String, and Symbolg Record dnd Tuple; an object is a member of the built-in type
Object; and a function is a callable object. A function that is associated with an objei«'ia a property is called a method.

6.2.1 The List and Record Specification Types Draft ECMA-262

The List type is used to explain the evaluation of argument lists (see 12.3.8) in new expressions, in function calls, and in other algorithms where a
simple ordered list of values is needed. Values of the List type are simply ordered sequences of list elements containing the individual values. These
sequences may be of any length. The elements of a list may be randomly accessed using 0-origin indices. For notational convenience an array-like

syntax can be used to access List elements. For example, arguments[2] is shorthand for saying the 3" element of the List arguments.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For example, « 1, 2 » defines a List value
that has two elements each of which is initialized to a specific value. A new empty List can be expressed as « ».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value consists of one or more named
fields. The value of each field is either an ECMAScript value or an abstract value represented by a name associated with the Record type. Field names
are always enclosed in double brackets, for example [[Value]].

[1tc39 / proposal-record-tuple @Unwatchv 68 *Star 620 YFork 14
<> Code (@ lIssues 13 il Pull requests 1 © Actions [J1l] Projects {0 EEWiki @) Security il Insights £ Settings
" " = E " z
Record" name clashes with spec-internal "Record =
- - - ll
Specification Type" #96
] rricard opened this issue 21 days ago - 4 comments
? rricard commented 21 days ago = edited Member (@) - Assignees Fo!
No one—assign yourself
Whenever we refer to "Record"” inside of a spec document, we start referring to 6.2.1 The List and Record
Specification Types which is a spec-internal notion.
Labels o

This is going to be a big issue that will hamper our ability to write accurate spec text.
This yields multiple questions:

® (asking spec editors) Could we be able to not match "Record” in spec text with the spec-internal
Record Specification Type?

® (asking spec editors) Is it possible to change the spec-internal Record term to something similar?

® Do we want to consider other terms instead of Record for this proposal?

As far as alternate names goes for this proposal or for renaming the spec-internal Record Specification

e A N T TG NATASY LR A, e SR AL A B N i e T O

Projects o
None yet
Milestone o

ljharb commented 21 days ago Member (g) -

| think even if we resolve the ecmarkup issue, having two kinds of "record” in the spec will be very
confusing.

I'd prefer that either the existing type, or this proposal, be renamed, to avoid that.

bakkot commented 20 days ago Member (@) -

The name of this type in this proposal affects far, far more people than the name of the spec-internal
type, so please don't let this conflict affect your choice of naming for this proposal.

| agree that this would require addressing, but if we collectively decide that "record” is the right thing to
call the thing in this proposal when ignoring concerns about the spec-internal type, then we'll go with
that and make the necessary editorial changes to the spec to accommodate that.

b °

Grammar

3 ECMAScript Language: Lexical Grammar

3.1 Punctuators

Punctuator ::
OptionalChainingPunctuator
NumberSignPunctuator
OtherPunctuator

OptionalChainingPunctuator ::
? . [lookahead & DecimalDigit]

NumberSignPunctuator ::
#1
#I

OtherPunctuator :: one of
f()IL[] ; ,£>&=>==l=== == =% § %% 44 = KLKD>D> & | 21 ~&& || 22 ? : = 4= == *= §= **= {<K= >D>= >DD>= &= |= = =>

DivPunctuator ::
/
/=

RightBracePunctuator ::
}

Trying to avoid a lookahead

4 ECMAScript Language: Expressions

4.1 Primary Expression
Syntax

PrimaryEXpression yicid, await]
this
IdentifierReference[>vic1d, 2nwait]

Literal
Arrayliteral (2vie1d, ?await]

ObjectLiteral [2Yield, 2?Await]
RecordLiteral{2yje1d, ?await]

TupleLiteral {2vie1d, 2await]

FunctionExpression

ClassEXpression (oyie14, 2await]
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral5y; 14, 2await, ~Tagged]

CoverParenthesizedExpressionAndArrowParameterList [7vic14, 2await]

4.1.1 Record Initializer

Syntax

RecordLiteral (y; .14, await]

#{ }
#1{ RecordPropertyDefinitionList{vie1d, 22await] }
#{ RecordPropertyDefinitionList{ov;c14, 2await] » }

RecordPropertyDefinitionList ;v;c14, await] °*
RecordPropertyDefinition >y;e14, 2await]

RecordPropertyDefinitionList (>y; .14, 22await] RecordPropertyDefinition syvicia, 2await]

RecordPropertyDefinition y; c14, await] °*
IdentifierReference [>y;ic14, 2await]
PropertyName>yici1d, 2await] - ASSIgNMENtEXpressioni.r,, »yvield, 2await]
- - - AssignmentEXpression+1n, 2vield, 2await]

Methods are forbidden

4.1.2 Tuple Initializer
Syntax

TupleLiteralvic1d, await]
#L 1
[TupleElementList [5vic14, 2await] 1
[TupleElementList [5v;ic14, 2await] r 1

TupleElementList{y;c14, await]
AssignmentEXpression +1n,, 2vield, 22wait]
SpreadElement[syield, 2await]
TupleElementList[2vie1d, 2await]

, AssignmentEXpression[+in, 2vield, 22await]

TupleElementList [>vie1d, 2await] » SpreadElementisyieid, ?await]

Holes are forbidden

