
Record & Tuple

Stage 1 Update @ TC39 June 2020

Robin Ricard & Rick Button
Bloomberg

Advisor: Daniel Ehrenberg
 Igalia

A recap of last update

Syntax

const contents = #[
 #{
 text: "Record and Tuple",
 font: "Comic Sans",
 },
 #{
 text: "An ECMA TC39 Stage 1 Proposal",
 },
];

// no methods in records
#{
 method() {
 // not allowed
 },
};

// no holes in tuples
#[1,,2]; // not allowed

Equality Semantics

-0
 =
==
 +
0

// SameValue
#[-0] !== #[+0]
#[NaN] === #[NaN]

// Strict Equality
#[-0] === #[+0]
#[NaN] !== #[NaN]

// Normalization
Object.is(
 #[-0][0],
 +0)

Issues #20 / #65
Actively being discussed

https://github.com/tc39/proposal-record-tuple/issues/20
https://github.com/tc39/proposal-record-tuple/issues/65

New since the last update

Disallowing symbols as
property keys in records

// Insertion order must not matter for equality.
const one = #{ a: 0, b: 1 };
const two = #{ b: 1, a: 0 };
assert(one === two);

// Solution: Record keys are sorted.
Object.keys(#{ a: 0, b: 1 }); // ["a", "b"]
Object.keys(#{ b: 1, a: 0 }); // ["a", "b"]

// What about symbol keys?
const sym1 = Symbol();
const sym2 = Symbol();

const rec = #{
 [sym1]: "foo",
 [sym2]: "bar",
};

Object.getOwnPropertySymbols(rec) // ???

No way to order symbol keys without a
global order for unregistered symbols

However, concerns with global symbol order introducing
side-channel (see issue #15)

https://github.com/tc39/proposal-record-tuple/issues/15

// TypeError
const rec = #{ [Symbol("foo")]: "foo" };

// TypeError
const rec = #{ [Symbol.for("foo")]: "foo" };

Thus, disallowing symbols
as keys in Records is our
solution.

Destructuring Syntax?
Briefly mentioned last meeting

// already possible
const { foo } = #{ foo: "foo" };
asserts(foo === "foo");

// rest properties work for Record/Tuple
const { foo, ...rest } = #{ foo: "foo", bar: "bar" };

// :(
assert(typeof rest === "object");

// rest properties/elements syntax for Record/Tuple?
const #{ foo, ...rest } = #{ foo: "foo", bar: "bar" };
assert(rest === #{ bar: "bar" });

const #[one, two, ...rest] = #[1,2,3,4,5];
assert(rest === #[3,4,5]);

// tricky (but expected) behavior
// if destructuring an object with
// object property values into a "rest properties Record"
const #{ foo, ...rest } = { foo: 123, bar: {} };
// ^ TypeError, can't create Record containing object

const #{ bar, ...rest } = { foo: 123, bar: {} };
// works, but feels bad

Destructuring Syntax?
Resolution: Omit, investigate further in the future

Please try the Record and Tuple Playground!

https://tinyurl.com/RecordTupleFeedback

https://tinyurl.com/RecordTupleFeedback

Seeking Stage 2 in July
● We believe we have a proper design for Record and Tuple
● Received good feedback on proposed solutions, hope to have more feedback

on polyfill usage before Stage 2
● We have started spec work, intend to complete “first pass” before July

meeting

Does anyone have additional considerations before Stage 2?

Discussion!
● Syntax/Grammar
● Equality Semantics
● Disallowing symbols as property keys in Records

Feedback before seeking Stage 2 in July?

